TABLE II. Coefficients of a ermal Expansion, Atomic Volumes and Compressibilities (sed to Calculate C [9]

Rare Earth	Coefficient of Expansion $\alpha \times 10^6 (^{\circ}\text{C}^{-1})$	Atomic Volume (cm³/g-at.)	Compressibility $\beta \times 10^7$ (cm ² /kg)
7 Ce	8, 5	20.69	40.97
131.	6.79	20,82	32.08
Nd	9. 98	20.59	30.02
Sin	10.4	19.95	33.36
Ein	33.1	28.98	66.63
Cit	8.28	19.94	25, 59
1.11	10.3	19.26	24.6
Dy	10.0	18.99	25, 52
110	10.7	18.75	24.72
Er	12.3	18.46	23.88
Tim	13.3	18.13	24.71

The dilation term is given by

$$C^{d} = \frac{9\alpha^{2} TV}{\beta}$$
 (8)

where α is the linear coefficient of thermal expansion, V that atomic volume and β the isothermal compressibility. The values of α , V and β which were used in Eqn. (8) to calculate C^4 are listed in Table II.

From the Debye theory of the lattice specific heat we have the following expression for $C^1_{\mathtt{v}}$:

$$C_v^1 = 3R[K(y) - yK'(y)]$$
 (9)

where R is the gas constant, $y = \theta/T$ (θ is the Debye temper-

Part II--Rare Earth Metals and Alloys

ata and K(y) is given by

$$K (y) = \frac{3}{y^3} \int_0^y \frac{y^3 dy}{e^{y}-1}$$
 (10)

161

TABLE III. Debye Temperatures Used to Calculate $C^1_{\boldsymbol{v}}$

Rare Earth	Debye Temperature ^a (°K)
γ-Ce	138
Pr	138
Nd	148
Sm	148
Eu	121 ^b
Gd	155
Tb	158
Dy	158
Но	161
Er	163
Tm	167

a. Based on specific heat data taken from about 15° to 300°K.

b. Calculated by ref. [9] from Lindemann equation.

The integral in Eqn. (10) has been solved, and tables of C_{ν}^{1} vs θ/T may be found in a number of sources* (of these, we have used the tables of Lewis *et al.* [16a] to determine C_{ν}^{1} at 300°K). The Debye temperature used to calculate C_{ν}^{1} are listed in Table III.

After these three contributions to specific heat were calculated, they were added together and subtracted from $C_{\mathfrak{p}}$ to give $C_{\mathfrak{p}}^{\bullet}$. The values for the various contributions to the specific heat are summarized in Table IV along with the resultant $C_{\mathfrak{p}}^{\bullet}$ term and the electronic specific heat constant, $\gamma.$

^{*} Some of these sources are listed in the compilation by Gschneidner. [9].